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Abstract In this paper, the transient photon statistics for single-mode
lasers is investigated by making use of the theory of quantum electrodynamics.
By taking into account of the transitive time 1,we obtain the master equation
for Jaynes-Cummings model. The relation between the Mandel factor and the
time is obtained by directly solving the master equation. The result shows that
a transient phenomenon from the transient super-Poissonian distribution to the
transient sub-Poissonian distribution occurs for single-mode lasers.

In addition, the influences of the thermal light field and the cavity loss on

the transient sub-Poissonian distribution are also studied.

Key words: single-mode laser; Jaynes-Cummings model; Transient sub-

Poissonian photon statistics.

1 Introduction

As is well known, sub-Poissonian light field is a typical nonclassical light
field. And it has widely applications to the ultraweak signal detection and to
the optical communication etc. I3 According to the usual theory, there is no
sub-Poisonian distribution for single-mode lasers.

In this paper, the transient photon statistics for single-mode lasers is in-

vestigated by making use of the theory of quantum electrodynamics. by taking
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into account of the transitive time 1. the master equation for Jaynes-Cummings

model and its solution are obtained.

2 Master equation
First of all, the interaction of one atom with the light field is taking into

account. According to the theory of the quantum electrodynamics. for the
Jaynes-Cummings model the Hamiltonion has the following form*(with %=
1)

H =wa+a+%woo,+g (act+a*o™), (1D
where a and a* are annihilation and creation operators of photon; o and o~ are
raising and lowering operators of the atom; » and w, are the mode frequency
and the transition frequency, respectively; o; is the inversion papurition of the
atom; g is the coupling constant between the atom and the field mode.

The eignequation of the expcession (1) is given by

H|®>=E|d>, (2)
where
Bf=[a(n+5)£Q,] 3
Eg=—1 @
g_ 2(‘)0
and
Q. =[()+g+ D (5)
A=0—w | (6)
The eignstates corresponding to expressions (3) and (4) are given by
sinf, cosf,
|pE>= |n,a>=+ ln+1,b> (N
cosb, sinb,
|og>=[0,b> (8)

here
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-1 Jn—+1
9n=tan(%—+——) (9
7+Qn
where n denoting the photon number: a and b denoting the upper and lower
atomic levels.

All nonzero matrix elements of the evolving operator

U (r)=exp(—iH1) (10)
in the state |n, a>=|n>|a> (a=a, b) are given by
a,=<n-+1,b|U (1) |n+1,b>=cos.e = "+sin,e " (1D
ba=<n=+1,b|U (1) |n,a>=sind,cosf, (e "B —e~ET) (12)
Ca=<n,a|U (1) |n,a>=sin%,e & "+ cos2,e =" (13)
and
B.(1)= Ibn(r)|2=Ag2(n+1) sinz(\/(%)z+gz(n+l)t), (14)
7+82(n+1)

Assuming at the initial time t there is no correlation between the atom and the
fidd, thus we have

ps (1) =p, ()X (t). (15)

This means that the matrix elements of p,(t) is the combination state |n, a

> and can be written as

<n, alp, (W) |n' ;& >=<n[p(t) |n'><a|p.(t) |a! >. (16)
After 1, the expression (15) becomes
ps(t+1)=U (1)p, (YU "1 (1) an
and
p(t+0)= 21 <alp, 4+ |a> (18)

In the photon number representation, the matrix elements of equation

(18) may be given by
prm (10 = 24 25<ny m |G () [k ok ><k ot k7>, (19)
where

519



<n, m|G) |k,k'>= 2 Z) ;<n, o' |U () [k, a><k',2 |[U2) |m,
0" >Poys (20)
where |m>>and |k> denotes the photon-number states,and
Po=<alpa(t) |/ >. @D
For the arbitrary initial state of the atom and the light field, using expres-
sions (11)—(13), (20) and (21), we obtain
Pnm(t+ 1) =P, [208m " Pa,m (t) +bae1bm—1Pn—1,m—1(t) ]
+Puw[0a8m " Ont1,m(t) +Coo1ba—1Pa,m-1(t)]
Pua[80bm " Po,mt1 (1) + b0 1Con 1P 1,m(t) ]
Puo[0abm " Pat1,ms1(t) +CoiCr_100,m (1) ] (22)
Expression (22) is a generol form. For the laser system under considern-

tion, we have

Puw=Py,=0 (23)
By taking into account equation (14) and the following expression
|2n |24 (b4 ]2=|Ca| 2+ |ba|?=1 (24)

then equation (22) can be deduced to the following form:

Pn,m(t+1) =Pou {/[1—B,(*) J[1—Bn (1) Jpa,m(t)
+\/Bn—l(T)Bm-—l(t)pn—l.m—l(t) } +Pbb {\/ Bn(t )Bm(t)
. Dn+1,m+1(t)+\/[1—Bn—l(t)][l—Bm_l(t)]pn.m(t) }- (25)

Under the coarse grain approximation, equation of motion for the density

matrix elements are given by
pun® = 2[47P (D) [punlt + 7 = un @] + Loy 0, (26)
0
where
p(¢/)=Ne™ (27)

denotes the distribution function of the interaction duration T between atom and

field; N is a normalization constant; v stands for the atomic decay rate.
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Farm the norwalization condition

[Penas =1 (28)
0
we get
v
N=r——= (29)
where
T=wt (30)

By substituting expression (25) into (26) and making use of Ref. [5],we

finally obtain

pom = = 2upen@® {1 — [27P () JIT= B = B(D])
0

T

+ U pu w1 O[T P (7)) YB LY )IB,_,(7)

Otﬁ

— g {1 — JdT’P(T’) JIT=B I = Basi (7]}
0

+ v,,p.+1,m+1<t>fdr'z><r'> JB.GBL ()
0

— 20l + 1+ m + Dpal® = 2Vampisaa ()]

+ 2”5[2 ‘\/(n + 1)(m + l)pn+1.m+l(t) - (n + m)P-.n(t)] (31)
2

where n,is the average photon number of the thermal light field; C is the cavity
loss.

Expression (31) is the master equation for the single-mode lasers.

3 Numerical calculation
In the case of resonance, master equation (31) can be reduced to the fol-

lowing form:
pom(®) = — 2,[1 — (Arm + Aa)]p0m (D
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+ v [ (A1 — A:-—l.m—-ljpa—l,m—l(t)
— [l — Ui+ Ad1m-1) ]00m ()
+ vb[An_,m - A::m]p-+l.m+l(t)

— [t 14 m A Dpn(®) — 2ampu a1 (]
2

+ %nbEZ Ja@+ D+ Dpasrmir® — (a +m)p, n(2)  (32)

where

1 [ ]
(1—eT)

A, = —;-pr(a)(\f[l — B, (#)]J[1 — B.(#)]F JB.(#)B.(a)) =3
[}

14+ eT{A(/A F1+./m + Dsin[4(/s F 1+ /m + DT] —cos[A(/x +1+./m + DT]} (33)
1+ [A(/s+1+/m + 1§

In particulnr, for the diagonal matrix elements!® expression (32) may be

further reduced to the following form:

Po(@) = poalo) = — (G+ A+ BT DITR_p i 500n(o)
+ G A AT o+ Gy BT D,
(o) (34)
where
2X 2%t
+e " {——=—=vn+1sin[—=—vn+1]—cos[ ,_\/n+ 1}
AT=d—eD = J_
o 1+[—;_~/ +17
(35)
~here R = '2_.9
_ 4
4= 4’
A
t=J%
o= rt;
and
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A= 2v.<%>2, (37)

4, = 2,(L)z,
v
The photon statistical properties of the lingt field can be expressed by

Mandel factor Q;
_<n>—<a>-<n>

Q <> ’ (38)
where
<n>= EnP,,
r=0
<n?>= >la’P,, (39)

a=0

During the trnnsient processes, Mandel factor Q >0, Q=0 or Q<0 correspond
to transient super-Poissonian distribution, Poissonian distribultion or sub-
Poissonian distribution, respectively.

Time evolution of the Mandel factor may be obtained by making use of the
expressions (34), (35) ,(38) and (39). The numerical results are shown in

Figures 1-5.

Figure 1 shows that the transient photon statistical property passes from
super-Poissonian distribution through Poissonian distribution into sub-Pois-
soninn distribution with the increase of o.

Figure 2 shows that the maximum value of the Q drift apart from the right
and decrease. At the same time, the velocity toward the trnnsient sub-Poisso-
nian distribution is also quickened.

Figure 3 indicates that the influence of the loss p on the Mandel factor is
marked and the transient sub-Poissonian distribution will disappear when the X
increase to some certain value.

Figure 4 indicates that the thermal light photon number not only deerease

523



sub-Poissonian distribution but also diminish the velocity for toward sub-Pois-

sonian distribution.

4 Brief discussion

In the present paper, we have studied the transient sub-Poissonian distri-
bution for single-mode lasers. The result shows that for single-mode lasers the
sub-Poissonian distribution may occur not only in the case of stotionary statel®
but also in the case of transient state.

As is well known, transient sub-Poissonian photon statistics is a character
for the quantum light field. And its appearance would deepen our knowledge of

the light field essence.
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Fig. 1.

Caption of Fig. 1. Time evolution of the mandel factor for T=1.1; R=

100; p=n,=0, X=F6

525



Fig. 2.

Caption of Fig. 2. Time evolution of the mandel factor for T=1.1; R
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Fig. 3.

Caption of Fig. 3. Time evolution of the mandel factor for T=1.1; R

=100; np,=0;X=6;(I) nu=0.1; (I)p=0.5; (H) n=0.8
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Fig. 4.

Caption of Fig. 4. Time evolution of the Mandel factor for T=1.1; X

=6; R=100; p=0; (1) ny2=0.2; (1) ny=0.5(CH) n,=1
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